

Welcome to Kwik’s documentation!

	Home
	Status

	How it looks like

	Motivation

	Requirements

	Setup

	Contribute

	Setup
	Make sure to setup a test engine

	Add the required repository to your build system

	Add the artifact dependency

	Kotlin/JVM configuration

	Configuration
	Default number of iterations

	Default seed

	Write property tests
	Basic usage

	Use assertions

	Choose the number of iterations

	Use a seed to get reproducible results

	Customize generated values

	Create a custom generator

	Add samples

	Skip an evaluation

	Make sure that a condition is satisfied at least once

	Built-in generators
	Primitives

	Text

	Collections

	Sequences

	Ranges

	Enums

	Java

	Java Time API

	Generator operators
	Combining exiting operators

	Experimental API

	Github [https://github.com/jcornaz/kwik]

Kwik

Property-based testing library for Kotlin.

Main features:

	Test-engine agnostic

	Multiplatform

	No reflection

	Configurable built-in generators

	Easy way to create and combine generators

	Seeded generation for reproducible results

Have a look at the setup and usage

Status

This project is discontinued. For property based testing with Kotlin, check out kotest [https://kotest.io].

How it looks like

class PlusOperatorTest {

 @Test
 fun isCommutative() = forAll { x: Int, y: Int ->
 x + y == y + x
 }

 @Test
 fun isAssociative() = forAll(iterations = 1000) { x: Int, y: Int, z: Int ->
 (x + y) + z == x + (y + z)
 }

 @Test
 fun zeroIsNeutral() = forAll(seed = -4567) { x: Int ->
 x + 0 == x
 }
}

For more information, read how to write tests and have a look at the available generators

Motivation

Property based testing is great and very powerful. But despite the fact that many good libraries already exist,
none of them fully fit my needs.

The known alternatives either:

	Are bound to a specific test-engine

	Can only be used when compiling kotlin to Java (and cannot be used in multi-platform projects)

	Relies on reflection, making the tests slower and make some errors detectable only at runtime

	Do not allow enough freedom and safety to customize existing generators

	Force the user to add unwanted dependencies in the classpath

Requirements

	Kotlin version: 1.4.0 or newer

	JDK version: 8, 11 or 15

Setup

Example of setup using gradle.

repositories {
 jcenter()
}

dependencies {
 testCompile("com.github.jcornaz.kwik:kwik-core-jvm:$kwikVersion")
}

For more information, read the setup

Contribute

See how to contribute [https://github.com/jcornaz/kwik/blob/main/CONTRIBUTING.md]

Setup

Make sure to setup a test engine

Kwik is not a test-engine, but only an assertion library.

So before being able to use Kwik you have to setup a test-engine for your project.
If the project is for the JVM (Java), you probably want to use Junit [https://junit.org/junit5] or Spek [https://spekframework.org].

Note

If you choose to use kotest [https://github.com/kotest/kotest] as a test-engine, be aware that it includes a similar property-based testing API.

In order to not get confused by mixing the two libraries, you may exclude the kotlintest-assertions artifact
or introduce some rules in your IDE/linter to prevent usages of the package kotlin.io.kotest.property.

Add the required repository to your build system

	Stable versions are published on jcenter [https://bintray.com/bintray/jcenter]

	Alpha, beta and release-candidates are published on https://dl.bintray.com/kwik/preview

Add the artifact dependency

	The group id is com.github.jcornaz.kwik

	Pick the artifact id that suits your platform:

	kwik-core-common

	kwik-core-jvm

	kwik-core-linux

	kwik-core-windows

	Pick a version from: https://github.com/jcornaz/kwik/releases

Example with gradle for Kotlin/JVM

repositories {
 jcenter()
}

dependencies {
 testCompile("com.github.jcornaz.kwik:kwik-core-jvm:$kwikVersion")
}

Kotlin/JVM configuration

If you compile Kotlin to Java ByteCode, you must target Java 8 or above.

Here is how to configure it with gradle

tasks.withType<KotlinJvmCompile> {
 kotlinOptions {
 jvmTarget = "1.8"
 }
}

Configuration

Kwik allow you to configure some defaults via system property (for Kotlin/JVM) or environment variable
(Kotlin/JVM, or Kotlin/Native on linux),

Note when running Kotlin/JVM the system properties have precedence over the environment variable
(in case they are both set)

Default number of iterations

By default Kwik will evaluate each property 200 times. (each time with different random inputs)

This default can configured by defining the system property kwik.iterations
or environment variable KWIK_ITERATIONS.

That can be especially useful to define a different number of iteration on the CI server

For instance one may write the following gradle setup:

tasks.withType<Test> {
 if ("CI" in System.getenv()) {

 // On the CI take more time to try falsifying each property
 systemProperty("kwik.iterations", "10000")
 } else {

 // On the local setup allow the developer specify by command line using `-Dkwik.iterations=`
 systemProperty("kwik.iterations", System.getProperty("kwik.iterations"))
 }
}

With the setup above each property would be evaluated 10’000 times (with different random inputs) when test are executed
on the CI server. (to make it work, the server needs to have a CI environment variable)

And any developer may run ./gradlew test -Dkwik.properties=10 if he wants a fast feedback loop,
evaluating each property only 10 times.

Note

The number of iteration defined when invoking forAll has precedence over the system property.

See how to choose number of iterations for specific property

Default seed

By default Kwik will generate a different random seed for each property evaluation, leading to unpredicatable input.

That’s generally desirable as over multiple build run, the test will cover more and more the domain of possible input.

But during debugging session, it is likely that one want perfectly reproducible builds.
That can be achieved by defining a seed either on the property evaluation
, or globally via the system property kwik.seed or the environment variable KWIK_SEED.

Write property tests

Basic usage

To evaluate a property we must invoke the function forAll like this:

@Test
fun isCommutative() = forAll { x: Int, y: Int ->
 x + y == y + x
}

forAll Will generate random inputs and evaluate the content of the lambda 200 times.
If the lambda return false, it will immediately throws an AssertionError making the test fail.

So the test pass only if the lambda returns true for 200 random inputs.

Note

Kwik can automatically generate values for Int, Double, Boolean and String.

For other types we have to Create a custom generator

Use assertions

If writing a lambda that return a boolean is not of your taste, you may alternatively use checkForAll.
Instead of returning a boolean, we have to throw an exception in case of falsification.

Example:

@Test
fun isCommutative2() = checkForAll { x: Int, y: Int ->
 assertEquals(x + y, y + x)
}

This alternative can be especially useful to get more descriptive messages. In the example above, a falsification of the
property would display the expected and actual values. Theses kind of messages cannot be provided when using forAll.

Choose the number of iterations

By default the property is evaluated 200 times 1. But we can configure it by setting the argument iteration.

For instance, the following property will be evaluated 1000 times:

forAll(iterations = 1000) { x: Int, y: Int, z: Int ->
 (x + y) + z == x + (y + z)
}

	1

	The default number of iterations can be configured via system property

Use a seed to get reproducible results

Because Kwik use random values, it is by definition non-deterministic. But sometimes we do want some determinism.
Let’s say, for instance we observed a failure on the CI server once, how can be sure to reproduce it locally?

To solve this problem, Kwik use seeds. By default a random seed is used and printed in the console.
If we observe a failure in the CI, we simply look at the build-log to see what seed has been used,
then we can pass the seed to forAll so that it always test the same inputs.

forAll(seed = -4567) { x: Int ->
 x + 0 == x
}

Note

The seed can be set globally

Customize generated values

Random input is good. But sometimes, we need to constraint the range of possible inputs.

That’s why the function forAll accepts generators, and all built-in generators can be configured.

forAll(Generator.ints(min = 0), Generator.ints(max = -1)) { x, y ->
 x + y < x
}

Create a custom generator

But what if we want to test with input types which are not supported by Kwik, like domain-specific ones?

For this we can create a generator by implementing the interface Generator.
And since that interface is a Kotlin fun interface, (aka SAM) one can create a custom generator like this:

val customGenerator1 = Generator { rng ->
 CustomClass(rng.nextInt(), rng.nextInt())
}

For enums or finite set of values we can use Generator.enum() and Generator.of():

val enumGenerator = Generator.enum<MyEnum>()

val finiteValueGenerator = Generator.of("a", "b", "c")

Note

You may reuse existing operators to build new ones. This can be done by calling Genarator.genarate(Random) on other
operators, or by using the available operators

Add samples

Testing against random values is great. But often some values have more interest to be tested than others.

These edge-cases can be added to a generator with the function withSamples.

val generator = Generator.ints().withSamples(13, 42)

// since ``null`` and ``NaN`` are common edge-case, there are dedicated ``withNull`` and ``withNaN`` operators.
val generatorWithNull = Generator.strings().withNull()
val generatorWithNaN = Generator.doubles().withNaN()

The samples have higher chance to be generated and will be tested more often.

Note

All built-in generators already have some samples included.

For instance Generator.ints() will generate 0, 1, -1, Int.MAX_VALUE and Int.MIN_VALUE often.

Skip an evaluation

Sometime we want to exclude some specific set of input. For that, we can call skipIf in the property evaluation block.

forAll { x: Int, y: Int ->
 skipIf(x == y)

 x != y
}

Be careful to not overuse it though as it may slow down the tests.
Always prefer creating or configuring custom generators if you can.

Make sure that a condition is satisfied at least once

All theses random inputs are nice, but we may want to be sure that some conditions are met all the time.

For that, we can call ensureAtLeastOne. It will force the property evaluation run as many time as necessary, so that
the given predicate gets true.

forAll { x: Int, y: Int ->

 // This forces the property to run as many times as necessary
 // so that we make sure to always test the case where x and y are both zero.
 ensureAtLeastOne { x == 0 && y == 0 }

 x * y == y * x
}

Be careful to not overuse it either as it may slow down the tests.

Built-in generators

Kwik provide a collection of generators to satisfy a wide variety of uses-cases.

They are all available as extension functions on Generator.Companion so that we can find them easily and invoke them like this:

val generator = Generator.ints()

Primitives

	Generator.ints(min = Int.MIN_VALUE, max = Int.MAX_VALUE)

	Generate integers. Includes the samples: 0, 1, -1, min and max.

Note that there are also positiveInts, naturalInts, negativeInts and nonZeroInts alternatives

	Generator.longs(min = Long.MIN_VALUE, max = Long.MAX_VALUE)

	Generate longs. Includes the samples: 0, 1, -1, min and max.

Note that there are also positiveLongs, naturalLongs, negativeLongs and nonZeroLongs alternatives

	Generator.floats(min = -Float.MAX_VALUE, max = Float.MAX_VALUE)

	Generate longs. Includes the samples: 0.0, 1.0, -1.0, min and max.

Note that NaN, POSITIVE_INFINITY and POSITIVE_INFINITY are not generated.
To test theses, we can use withSamples() or withNaN()

Example: Generator.floats().withNaN().withSamples(Float.POSITIVE_INFINITY)

Note that there are also positiveFloats, negativeFloats and nonZeroFloats alternatives

	Generator.doubles(min = -Double.MAX_VALUE, max = Double.MAX_VALUE)

	Generate doubles. Includes the samples: 0.0, 1.0, -1.0, min and max.

Note that NaN, POSITIVE_INFINITY and POSITIVE_INFINITY are not generated.
To test theses, we can use withSamples() or withNaN()

Example: Generator.doubles().withNaN().withSamples(Double.POSITIVE_INFINITY)

Note that there are also positiveDoubles, negativeDoubles and nonZeroDoubles alternatives

	Generator.booleans()

	Generate booleans

Text

	Generator.characters(charset = CharSets.printable, exclude = emptySet())

	Generate strings. Use the parameter charset and exclude to customize the characters which can be used.

Generation includes space (’ ‘) as a sample.

Note

CharSets provide few common set of characters such as alpha, alphaNumeric and others

It is there to help quickly configure the Character generator.

By default, it will generate any printable characters.

	Generator.strings(minLength = 0, maxLength = 50, charGenerator = Generator.characters())

	Generate strings. Use the parameter charGenerator to provide a character generator which is used to make the
string.

Generation includes empty (“”) string as a sample.

Collections

	Generator.lists(elementGen = Generator.default(), minSize = 0, maxSize = 50)

	Generate lists. elementGen can be used to define the generator of the elements.

Generation include empty and singleton lists as samples

Note that there is also a nonEmptyLists alternative

	Generator.sets(elementGen = Generator.default(), minSize = 0, maxSize = 50)

	Generate sets. elementGen can be used to define the generator of the elements.

Generation include empty and singleton sets as samples

Will fail in it takes too much iteration to reach the minSize
(so make sure the element generator can generate enough different values)

Note that there is also a nonEmptySets alternative

	Generator.maps(keyGen = Generator.default(), valueGen = Generator.default(), minSize = 0, maxSize = 50)

	Generate sets. keyGen can be used to define the generator of the elements.

Generation include empty and singleton maps as samples

Will fail in it takes too much iteration to reach the minSize
(so make sure the element generator can generate enough different values)

Note that there is also a nonEmptyMaps alternative

Sequences

	Generator.sequences(elementGen = Generator.default(), minSize = 0, maxSize = 50)

	Generate sequences. elementGen can be used to define the generator of the elements.

Generation include empty and singleton sequences as samples

Note that there is also a nonEmptySequences alternative

Ranges

	Generator.ranges(elementGen)

	Generate ranges. elementGen can be used to define the generator of the elements.

	Generator.intRanges(elementGen = Generator.ints())

	Generates ClosedRanged<Int>. Includes empty and singleton ranges as samples

	Generator.longRanges(elementGen = Generator.longs())

	Generates ClosedRanged<Long>. Includes empty and singleton ranges as samples

	Generator.charRanges(elementGen = Generator.characters())

	Generates ClosedRanged<Char>. Includes empty and singleton ranges as samples

Enums

	Generator.enum<T>()

	Create a generator for the given enum type T.

The enum must contains at least one enumeration.

Java

	Generator.uuids()

	Create a generator for UUID

Java Time API

	Generator.instants(min: Instant.MIN, max: Instant.MAX)

	Generates Instants (with nano seconds), includes the samples: Instant.EPOCH (1970-01-01T00:00:00.000Z), min and max

	Generator.durations(min, max)

	Generates Durations (with nano seconds), Includes the samples: Duration.ZERO, min and max

	Generator.localTimes(min: LocalTime.MIN, max: LocalTime.MAX)

	Generates LocalTimes (with nano seconds), Includes the samples: LocalTime.NOON, min and max

	Generator.localDates(min: LocalDate.MIN, max: LocalDate.MAX)

	Generates LocalDates, includes the samples: LocalDate.EPOCH (1970-01-01), min and max

	Generator.localDateTimes(min: LocalDateTime.MIN, max: LocalDateTime.MAX)

	Generates LocalDateTimes, includes the samples: LocalDate.EPOCH.atStartOfDay (1970-01-01T00:00:00.000Z), min and max

Generator operators

Few operators are available as extension function on Generator to easily derive existing generators.

	withSamples(vararg samples: T, probability: Double)

	Add the given samples into the generated values.
The samples will have a higher probability to be generated than the other values.

That probability can be customized using the probability argument.

	withNull()

	Add null into the generated values, making sure is is always tested

	withNaN()

	Add NaN into the generated values, making sure is is always tested

(for double generators only)

	map(transform: (T) -> R)

	Apply a transformation to all elements emitted by the source generator

	andThen(transform: (T) -> Generator<R>)

	Like map, it applies a transformation to all elements emitted by the source generator. The only difference
is that transform returns a generator instead of a value. You may see it like a flatMap.

	filter(predicate: (T) -> Boolean)

	Filter elements emitted by the source generator, so that only elements matching the predicate are emitted.

Be aware that the property evaluation will then have to generate more values.

Always favor other method of creating a generators or at least make sure that most of values will pass the predicate.

	filterNot(predicate: (T) -> Boolean)

	filter elements emitted by the source generator, so that only elements not matching the predicate are emitted.

Be aware that the property evaluation will then have to generate more values.

Always favor other method of creating a generators or at least make sure that most of values won’t pass the predicate.

Combining exiting operators

	combineWith(other: Generator, transform: (A, B) -> R)

	Combine the generated values of both generators.

Generated values will start by a combination of the 5 first samples of both generators.
Then samples of each generator have a higher probability to appear than other random values.

Not specifying the transform, will combine the value in pairs.

	plus(other: Generator<T>) (can be used as +)

	Merge the generated values of both operators. (each generator having the same probability to used)

	frequency(vararg weightedGenerators: Pair<Double, Generator<T>>)

	Returns a generator that randomly pick a value from the given list of the generator according to their respective weights.

Experimental API

After using this library for a while, I started to work on a new iteration of the API.
Although being only a draft, the goal and design intent of the new API has been detailed on this roadmap [https://github.com/jcornaz/kwik/blob/main/ROADMAP.md].

The whole kwik library should be considered as experimental. But this new API is even more bleeding edge, far from complete and
very likely to receive breaking changes. That is why this new API is marked with the @ExperimentalKwikApi annotation.

If you want to try it out, you can opt-in with @OptIn(ExperimentalApi).
Alternatively you can or add -Xopt-in=com.github.jcornaz.kwik.ExperimentalKwiKApi to your compiler flags.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Kwik’s documentation!

 		
 Home

 		
 Status

 		
 How it looks like

 		
 Motivation

 		
 Requirements

 		
 Setup

 		
 Contribute

 		
 Setup

 		
 Make sure to setup a test engine

 		
 Add the required repository to your build system

 		
 Add the artifact dependency

 		
 Example with gradle for Kotlin/JVM

 		
 Kotlin/JVM configuration

 		
 Configuration

 		
 Default number of iterations

 		
 Default seed

 		
 Write property tests

 		
 Basic usage

 		
 Use assertions

 		
 Choose the number of iterations

 		
 Use a seed to get reproducible results

 		
 Customize generated values

 		
 Create a custom generator

 		
 Add samples

 		
 Skip an evaluation

 		
 Make sure that a condition is satisfied at least once

 		
 Built-in generators

 		
 Primitives

 		
 Text

 		
 Collections

 		
 Sequences

 		
 Ranges

 		
 Enums

 		
 Java

 		
 Java Time API

 		
 Generator operators

 		
 Combining exiting operators

 		
 Experimental API

_static/up-pressed.png

_static/up.png

